Glycoprotein nonmetastatic melanoma protein B accelerates tumorigenesis of cervical cancer in vitro by regulating the Wnt/β-catenin pathway

Cervical cancer is one of the most common cancers among women around the world. However, the underlying mechanism involved in cervical cancer progression is incompletely known. In the present study, we determined the role of glycoprotein nonmetastatic melanoma protein B (GPNMB) in tumorigenesis of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian journal of medical and biological research 2019-01, Vol.52 (1), p.e7567-e7567
Hauptverfasser: Xu, Shuxiang, Fan, Yingying, Li, Dongping, Liu, Yan, Chen, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cervical cancer is one of the most common cancers among women around the world. However, the underlying mechanism involved in cervical cancer progression is incompletely known. In the present study, we determined the role of glycoprotein nonmetastatic melanoma protein B (GPNMB) in tumorigenesis of cervical cancer. According to the GEO database, we found that GPNMB expression was significantly higher in cervical cancer than in normal cervix epithelium. A similar pattern was observed in GPNMB expression in cultured cervical cancer cells and normal cervical epithelial cells. Compared with the control, GPNMB knockdown significantly decreased the proliferation and migration capacity, but enhanced the apoptosis capacity of SiHa and HeLa cells. Additionally, the activity of MMP-2 and MMP-9 were aberrantly increased in SiHa and HeLa cells compared with normal cervical epithelial cells, whereas their activities were strongly inhibited by GPNMB siRNA. Furthermore, Wnt/β-catenin signaling was activated by GPNMB in SiHa and HeLa cells. Increased MMP-2/MMP-9 expression was suppressed by Dkk-1, inhibitor of Wnt/β-catenin signaling, while it was enhanced by stimulator BIO. The proliferation, migration, and apoptosis capacity of HeLa cells were found to be affected by Dkk-1 and BIO to different extents. In conclusion, we demonstrated that GPNMB contributed to the tumorigenesis of cervical cancer, at least in part, by regulating MMP-2/MMP-9 activity in tumor cells via activation of canonical Wnt/β-catenin signaling. This might be a potential therapeutic target for treating human cervical cancer.
ISSN:0100-879X
1414-431X
1414-431X
1678-4510
DOI:10.1590/1414-431X20187567