A Novel 3D Reconstruction Sensor Using a Diving Lamp and a Camera for Underwater Cave Exploration

Aquifer karstic structures, due to their complex nature, present significant challenges in accurately mapping their intricate features. Traditional methods often rely on invasive techniques or sophisticated equipment, limiting accessibility and feasibility. In this paper, a new approach is proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-06, Vol.24 (12), p.4024
Hauptverfasser: Massone, Quentin, Druon, Sébastien, Triboulet, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aquifer karstic structures, due to their complex nature, present significant challenges in accurately mapping their intricate features. Traditional methods often rely on invasive techniques or sophisticated equipment, limiting accessibility and feasibility. In this paper, a new approach is proposed for a non-invasive, low-cost 3D reconstruction using a camera that observes the light projection of a simple diving lamp. The method capitalizes on the principles of structured light, leveraging the projection of light contours onto the karstic surfaces. By capturing the resultant light patterns with a camera, three-dimensional representations of the structures are reconstructed. The simplicity and portability of the equipment required make this method highly versatile, enabling deployment in diverse underwater environments. This approach is validated through extensive field experiments conducted in various aquifer karstic settings. The results demonstrate the efficacy of this method in accurately delineating intricate karstic features with remarkable detail and resolution. Furthermore, the non-destructive nature of this technique minimizes disturbance to delicate aquatic ecosystems while providing valuable insights into the subterranean landscape. This innovative methodology not only offers a cost-effective and non-invasive means of mapping aquifer karstic structures but also opens avenues for comprehensive environmental monitoring and resource management. Its potential applications span hydrogeological studies, environmental conservation efforts, and sustainable water resource management practices in karstic terrains worldwide.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24124024