Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation
IL-1β, a pro-inflammatory cytokine, has been shown to contribute to radiation injury. Sirt1, an NAD+-dependent class III protein deacetylase, plays an important role in the regulation of the proinflammatory cytokines involved in inflammation-associated diseases. The relationship between Sirt1 and IL...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2013-07, Vol.14 (7), p.14105-14118 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IL-1β, a pro-inflammatory cytokine, has been shown to contribute to radiation injury. Sirt1, an NAD+-dependent class III protein deacetylase, plays an important role in the regulation of the proinflammatory cytokines involved in inflammation-associated diseases. The relationship between Sirt1 and IL-1β, however, has remained elusive. The present study was designed to explore the potential effect of Sirt1 on IL-1β expression induced by radiation and to provide a new target for the development of radiation protection drugs. Our results showed that radiation significantly increased IL-1β mRNA and protein expression and that pretreatment with resveratrol, a Sirt1 activator, inhibited the radiation-induced IL-1β expression in a concentration-dependent manner, whereas the knockdown or inhibition of Sirt1 by nicotinamide significantly enhanced radiation-induced IL-1β expression. This effect can likely be attributed to Sirt1-mediated inhibition of NLRP-3 inflammasome activation because Sirt1 inhibits the transactivation potential of NF-κb by deacetylation, which then suppresses NLRP3 transcription. Taken together, the results demonstrate that Sirt1 exerts anti-inflammatory effects by regulating NLRP3 expression partially through the NF-κb pathway in mesenchymal stem cells. More importantly, our findings suggest that resveratrol is an effective agent in protecting against radiation injury, and we provide a theoretical basis for developing a drug to protect against radiation injury by targeting Sirt1. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms140714105 |