In-Plane Liftout and Push-to-Pull for In Situ Mechanical Testing of Irradiated Inconel X-750
A streamlined sample preparation method for nanomechanical testing is needed to improve the quality of specimens, reduce the cost, and increase the versatility of specimen fabrication. This work outlines an in-plane liftout focused ion beam (FIB) fabrication procedure to prepare electron-transparent...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2024-09, Vol.17 (17), p.4199 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A streamlined sample preparation method for nanomechanical testing is needed to improve the quality of specimens, reduce the cost, and increase the versatility of specimen fabrication. This work outlines an in-plane liftout focused ion beam (FIB) fabrication procedure to prepare electron-transparent specimens for in situ transmission electron microscopy (TEM) nanomechanical testing. Ion etching and electron backscatter diffraction (EBSD) techniques were used to lift out a [110] oriented grain from a neutron-irradiated bulk X-750 alloy. Careful control of voltages and currents ensured precision. Top surface thinning sweeps prevented resurfacing and redeposition while dog-bone geometries were shaped with a 1:4 gauge width-to-milling pattern diameter ratio. Nanotensile testing in the TEM with a picoindenter allowed for the estimation of an ultimate tensile strength of 2.41 GPa, and inspection revealed a high density of bubbles in the X-750 matrix. The proposed fabrication procedure is significant for preparing samples from radioactive materials, studying complex structures that are orientation-dependent, and analyzing desired planar areas. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17174199 |