Serpentine alteration as source of high dissolved silicon and elevated δ30Si values to the marine Si cycle
Serpentine alteration is recognized as an important process for element cycling, however, related silicon fluxes are unknown. Pore fluids from serpentinite seamounts sampled in the Mariana forearc region during IODP Expedition 366 were investigated for their Si, B, and Sr isotope signatures (δ 30 Si...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-10, Vol.11 (1), p.5123-5123, Article 5123 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Serpentine alteration is recognized as an important process for element cycling, however, related silicon fluxes are unknown. Pore fluids from serpentinite seamounts sampled in the Mariana forearc region during IODP Expedition 366 were investigated for their Si, B, and Sr isotope signatures (δ
30
Si, δ
11
B, and
87
Sr/
86
Sr, respectively) to study serpentinization in the mantle wedge and shallow serpentine alteration to authigenic clays by seawater. While serpentinization in the mantle wedge caused no significant Si isotope fractionation, implying closed system conditions, serpentine alteration by seawater led to the formation of authigenic phyllosilicates, causing the highest natural fluid δ
30
Si values measured to date (up to +5.2 ± 0.2‰). Here we show that seafloor alteration of serpentinites is a source of Si to the ocean with extremely high fluid δ
30
Si values, which can explain anomalies in the marine Si budget like in the Cascadia Basin and which has to be considered in future investigations of the global marine Si cycle.
The Si cycle is important to ocean productivity and nutrient cycling, however there are uncertainties in global budgets. Here the authors use a multi-isotope approach on seafloor sediments and pore fluids, finding that an unappreciated source of Si to the ocean is the degradation of seafloor serpentinites. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-18804-y |