Observational signatures of charged rotating traversable wormhole: shadows and light rings with different accretions

In this work, we investigate the optical appearance of qualitatively new observational features of accretion disk images around the charged rotating traversable wormhole (TWH) space-time for different spin, throat, and charge values. To accomplish this, we first consider the Hamilton–Jacobi method t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2024-05, Vol.84 (5), p.480-15, Article 480
Hauptverfasser: Saleem, Rabia, Aslam, M. Israr, Shahid, Shokaib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we investigate the optical appearance of qualitatively new observational features of accretion disk images around the charged rotating traversable wormhole (TWH) space-time for different spin, throat, and charge values. To accomplish this, we first consider the Hamilton–Jacobi method to derive the geodesic equations for the motion of photons and study the effects of parameters on the photon orbit in the observer’s sky. We found that each parameter affects the size and shape of the wormhole (WH) shadow and flatness is observed in the shadow because of spin and other parameters. To produce shadow images of sufficient visual quality but within manageable computational times, we adopt the ray-trace procedure and characterize the significant features of light trajectories on the observer’s screen, depending on the interaction between the space-time structure and the accretion disk. In addition, we consider the static spherically symmetric accretion flow model to observe the specific intensity around the traversable WH space-time geometry. It is found that the intensity and positions of the photon ring vary with respect to the involved parameters. In future observation, this type of study may provide a fertile playground to test the nature of compact objects, specifically the WH in the strong-field regime.
ISSN:1434-6052
1434-6044
1434-6052
DOI:10.1140/epjc/s10052-024-12853-z