Experimental study on shearer traction vibration considering attitude disturbances
Due to the influence of structural clearances, the shearer's oscillates and jumps concerning the scraper are frequent, which induces the collision and vibration impact of the traction components and exacerbates the traction failure of the shearer. Therefore, to explore the correlation between a...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-03, Vol.10 (5), p.e26972-e26972, Article e26972 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the influence of structural clearances, the shearer's oscillates and jumps concerning the scraper are frequent, which induces the collision and vibration impact of the traction components and exacerbates the traction failure of the shearer. Therefore, to explore the correlation between attitude disturbance and traction vibration, an experiment on the traction vibration is carried out, the spatial swaying of the shearer and vibration differences between two traction components are obtained, the influence of the lifting angle of the rocker arm is discussed, and the influence mechanism of the shearer attitude disturbance on traction vibration is elucidated. The results indicate that the rolling swing intensity of the shearer is the highest while the yawing swing intensity is the lowest, and the pitch swing intensity increases with the increase of the lifting angle of the rocker arm. Besides, the vibration impact indices of the two walking mechanisms have a competitive relationship of one decreasing but the other increasing, which can be used as a reference signal to judge the rolling swing and load-sharing performance of the traction part. Moreover, with the swing attitude, the competitive relationship of the average of vibration peaks is shown in the two support shoes, and it can be used as a reference signal to judge the pitching swing and the load-sharing performance of the traction part. This result reveals the impact mechanism of attitude disturbances on traction vibration and proposes a signal monitoring approach for judging the traction attitude disturbance and load-sharing performance, providing a reference for reducing traction faults. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e26972 |