A new type of R-contraction and its best proximity points
In this paper, we aim to overcome the problem given by Abkar et al. [Abstr. Appl. Anal., 2013 (2013), 189567], and so to obtain real generalizations of fixed point results in the literature. In this direction, we introduce a new class of functions, which include $ \mathcal{R} $-functions. Thus, we p...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2024-01, Vol.9 (4), p.9692-9704 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we aim to overcome the problem given by Abkar et al. [Abstr. Appl. Anal., 2013 (2013), 189567], and so to obtain real generalizations of fixed point results in the literature. In this direction, we introduce a new class of functions, which include $ \mathcal{R} $-functions. Thus, we present a new type of $ \mathcal{R} $ -contraction and weaken $ \mathcal{R} $-contractions that have often been studied recently. We also give a new definition of the $ P $-property. Hence, we obtain some best proximity point results, including fixed point results for the new kind of $ \mathcal{R} $-contractions. Then, we provide an example to show the effectiveness of our results. Finally, inspired by a nice and interesting technique, we investigate the existence of a best proximity point of the homotopic mappings with the help of our main result. |
---|---|
ISSN: | 2473-6988 |
DOI: | 10.3934/math.2024474 |