Matrix completion via a low rank factorization model and an Augmented Lagrangean Succesive Overrelaxation Algorithm
The matrix completion problem (MC) has been approximated by using the nuclear norm relaxation. Some algorithms based on this strategy require the computationally expensive singular value decomposition (SVD) at each iteration. One way to avoid SVD calculations is to use alternating methods, which pur...
Gespeichert in:
Veröffentlicht in: | Bulletin of Computational Applied Mathematics 2015-02, Vol.2 (2), p.21-46 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The matrix completion problem (MC) has been approximated by using the nuclear norm relaxation. Some algorithms based on this strategy require the computationally expensive singular value decomposition (SVD) at each iteration. One way to avoid SVD calculations is to use alternating methods, which pursue the completion through matrix factorization with a low rank condition. In this work an augmented Lagrangean-type alternating algorithm is proposed. The new algorithm uses duality information to define the iterations, in contrast to the solely primal LMaFit algorithm, which employs a Successive Over Relaxation scheme. The convergence result is studied. Some numerical experiments are given to compare numerical performance of both proposals. |
---|---|
ISSN: | 2244-8659 2244-8659 |