Biopurification of Oligosaccharides by Immobilized Kluyveromyces Lactis

Oligosaccharides with diverse and complex structures such as milk oligosaccharides have physiological functions including modulating intestinal microbiota or stimulating immune cell responses. However, milk carbohydrates include about 40–50% of lactose which requires a cost-effective method to separ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-07, Vol.9 (14), p.2845
Hauptverfasser: Yeo, In-Seok, Yoon, Yeo-Jin, Seo, Nari, An, Hyun Joo, Kim, Jae-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oligosaccharides with diverse and complex structures such as milk oligosaccharides have physiological functions including modulating intestinal microbiota or stimulating immune cell responses. However, milk carbohydrates include about 40–50% of lactose which requires a cost-effective method to separate. We developed a new method to purify the oligosaccharides from carbohydrate mixtures such as human milk oligosaccharides (HMOs) and galactooligosaccharides (GOSs) by exploiting immobilized Kluyveromyces lactis as microbial catalysts. Evaluation of media components exhibited no significant differences in the lactose removal efficiency when nutrient-rich media, minimal salt media, and distilled water without any media components were used. With the immobilization on alginate beads, the lactose removal efficiency was increased 3.4 fold compared to that of suspension culture. When the immobilized cells were reused to design a continuous process, 4 h of pre-activation enhanced the lactose eliminating performance 2.5 fold. Finally, immobilized K. lactis was used as microbial catalysts for the biopurification of HMOs and GOSs, and lactose was effectively removed without altering the overall distribution of oligosaccharides.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9142845