INVESTIGATION OF THE KOLMOGOROV-WIENER FILTER FOR CONTINUOUS FRACTAL PROCESSES ON THE BASIS OF THE CHEBYSHEV POLYNOMIALS OF THE FIRST KIND

This paper is devoted to the investigation of the Kolmogorov-Wiener filter weight function for continuous fractal processes with a power-law structure function. The corresponding weight function is sought as an approximate solution to the Wiener-Hopf integral equation. The truncated polynomial expan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Informatyka, automatyka, pomiary w gospodarce i ochronie środowiska automatyka, pomiary w gospodarce i ochronie środowiska, 2020-03, Vol.10 (1), p.58-61
Hauptverfasser: Gorev, Vyacheslav, Gusev, Alexander, Korniienko, Valerii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the investigation of the Kolmogorov-Wiener filter weight function for continuous fractal processes with a power-law structure function. The corresponding weight function is sought as an approximate solution to the Wiener-Hopf integral equation. The truncated polynomial expansion method is used. The solution is obtained on the basis of the Chebyshev polynomials of the first kind. The results are compared with the results of the authors’ previous investigations devoted to the same problem where other polynomial sets were used. It is shown that different polynomial sets present almost the same behaviour of the solution convergence.
ISSN:2083-0157
2391-6761
DOI:10.35784/iapgos.912