Approximate Solution of LR Fuzzy Sylvester Matrix Equations

The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.606-615-663
Hauptverfasser: Guo, Xiaobin, Shang, Dequan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.
ISSN:1110-757X
1687-0042
DOI:10.1155/2013/752760