On the Unitary Representations of the Braid Group B6

We consider a non-abelian leakage-free qudit system that consists of two qubits each composed of three anyons. For this system, we need to have a non-abelian four dimensional unitary representation of the braid group B 6 to obtain a totally leakage-free braiding. The obtained representation is denot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2019-11, Vol.7 (11), p.1080
Hauptverfasser: Dally, Malak M., Abdulrahim, Mohammad N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a non-abelian leakage-free qudit system that consists of two qubits each composed of three anyons. For this system, we need to have a non-abelian four dimensional unitary representation of the braid group B 6 to obtain a totally leakage-free braiding. The obtained representation is denoted by ρ . We first prove that ρ is irreducible. Next, we find the points y ∈ C * at which the representation ρ is equivalent to the tensor product of a one dimensional representation χ ( y ) and μ ^ 6 ( ± i ) , an irreducible four dimensional representation of the braid group B 6 . The representation μ ^ 6 ( ± i ) was constructed by E. Formanek to classify the irreducible representations of the braid group B n of low degree. Finally, we prove that the representation χ ( y ) ⊗ μ ^ 6 ( ± i ) is a unitary relative to a hermitian positive definite matrix.
ISSN:2227-7390
2227-7390
DOI:10.3390/math7111080