Heterogeneity in the Driver Behavior: An Exploratory Study Using Real-Time Driving Data

Driver behavior heterogeneity is a significant aspect to understand the individual behavioral variations and develop driver assistance systems. This study characterizes the heterogeneity in driving behavior using real-time driving performance features. In this context, the study investigates the ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced transportation 2022-06, Vol.2022, p.1-17
Hauptverfasser: Yarlagadda, Jahnavi, Pawar, Digvijay S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Driver behavior heterogeneity is a significant aspect to understand the individual behavioral variations and develop driver assistance systems. This study characterizes the heterogeneity in driving behavior using real-time driving performance features. In this context, the study investigates the extent of variations in the individual’s driving styles during routine driving. The driving styles are conceptualized using the vehicle kinematic data, that is, speed and accelerations performed during longitudinal control. The data is collected for 42 professional drivers using instrumented vehicle over a defined study stretch. An algorithm is developed for data extraction and total 7548 acceleration and 6156 braking maneuvers and corresponding driving performance features are extracted. The driving maneuver data are analyzed using the unsupervised techniques (PCA and K-means clustering) and three patterns of acceleration and braking are identified, which are further associated with two patterns of speed behavior. The results showed that each driver is found to exhibit different driving patterns in different driving regimes and no driver shows constantly safe or aggressive behavior. The aggression scores are found to be different among drivers, indicating the behavioral heterogeneity. This study results demonstrate that, driver’s level of aggression in different driving regimes is not constant and characterizing the driver by means of abstract driving features is not indicative of the diversified driving behavior. The proposed method identifies the individualized driving behaviors, reflecting the driver’s choice of driving maneuvers. Thus, the insights from the study are highly useful to design driver-specific safety models for driver assistance and driver identification.
ISSN:0197-6729
2042-3195
DOI:10.1155/2022/4509071