Mathematical analysis of COVID-19 by using SIR model with convex incidence rate

This paper is about a new COVID-19 SIR model containing three classes; Susceptible S(t), Infected I(t), and Recovered R(t) with the Convex incidence rate. Firstly, we present the subject model in the form of differential equations. Secondly, “the disease-free and endemic equilibrium” is calculated f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Results in physics 2021-04, Vol.23, p.103970-103970, Article 103970
Hauptverfasser: Din, Rahim ud, Algehyne, Ebrahem A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is about a new COVID-19 SIR model containing three classes; Susceptible S(t), Infected I(t), and Recovered R(t) with the Convex incidence rate. Firstly, we present the subject model in the form of differential equations. Secondly, “the disease-free and endemic equilibrium” is calculated for the model. Also, the basic reproduction number R0 is derived for the model. Furthermore, the Global Stability is calculated using the Lyapunov Function construction, while the Local Stability is determined using the Jacobian matrix. The numerical simulation is calculated using the Non-Standard Finite Difference (NFDS) scheme. In the numerical simulation, we prove our model using the data from Pakistan. “Simulation” means how S(t), I(t), and R(t) protection, exposure, and death rates affect people with the elapse of time.
ISSN:2211-3797
2211-3797
DOI:10.1016/j.rinp.2021.103970