Insecticidal potential of Ag-loaded 4A-zeolite and its formulations with Rosmarinus officinalis essential oil against rice weevil (Sitophilus oryzae) and lesser grain borer (Rhyzopertha dominica)

The insecticidal efficiency of Ag-loaded 4A-zeolite (ZAg) and its formulations with Rosmarinus officinalis essential oil (RO) was evaluated against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). For comparison, different rates of ZAg (0.25, 0.5, 0.75, and 1 g ⋅ kg–1 wheat) were used solely an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant protection research 2019-10, Vol.59 (3), p.324-333
Hauptverfasser: Ahmed M. El-Bakry, Hanan F. Youssef, Nahed F. Abdel-Aziz, Elham A. Sammour
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The insecticidal efficiency of Ag-loaded 4A-zeolite (ZAg) and its formulations with Rosmarinus officinalis essential oil (RO) was evaluated against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). For comparison, different rates of ZAg (0.25, 0.5, 0.75, and 1 g ⋅ kg–1 wheat) were used solely and in a combination with LC50 concentrations of RO. Mortality was assessed after 7, 14, and 21 days of insect exposure to treated wheat. The progeny production was also evaluated. The use of ZAg accomplished a complete mortality (100%) on S. oryzae and 96.67% on R. dominica as well as 100% mortality of progeny against the two insect species after the longest exposing duration (21 days), at the highest rate (1 g ⋅ kg–1). On the other hand, the complete mortalities of ZAg formulations on S. oryzae were obtained after 14 d of treatment with F1 formulation (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and after 7 days with the other tested formulations. In addition, the complete mortality on R. dominica was obtained only by F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulation after 14 days of treatment. Concerning the efficiency of the examined formulations on the progeny of S. oryzae, F1 (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and F2 (0.605 g ⋅ kg–1 RO + 0.5 g ⋅ kg–1 ZAg) formulations recorded 100% mortality. In addition, F3 (0.605 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F4 (0.605 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations suppressed the progeny production. Furthermore, the complete mortality of R. dominica progeny was obtained with F7 (0.059 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations. ZAg, especially its formulations with R. officinalis oil, had potential effects against two stored-product insects. F1 and F8 formulations could be treated efficiently on S. oryzae and R. dominica, respectively.
ISSN:1899-007X
1899-007X
DOI:10.24425/jppr.2019.129741