Study on the diffusion and deposition law of pore slurry in gangue filling zone based on CFD-DEM coupling

In this study, the slurry diffusion in a cavity filled with coal gangue was studied by combining experimental and numerical simulation methods. By calibrating slurry and particle materials, the grouting process in coal gangue filling area is simulated successfully, and the change of slurry diffusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-02, Vol.19 (2), p.e0297151-e0297151
Hauptverfasser: Ji, Zhongkui, Gao, Lijun, Guo, Shuquan, Sun, Kui, Ma, Wanchao, Wu, Boqiang, Xue, Xiaoyuan, Chen, Pan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the slurry diffusion in a cavity filled with coal gangue was studied by combining experimental and numerical simulation methods. By calibrating slurry and particle materials, the grouting process in coal gangue filling area is simulated successfully, and the change of slurry diffusion flow field and particle movement and settling process in different dimensions are deeply analyzed. Both experimental and numerical simulation results show that the particle settlement presents a bell-shaped curve, which is of great significance for understanding the particle movement and settlement behavior in the filling cavity. In addition, it is found that the grouting speed has a significant effect on the particle settlement during the slurry diffusion process. When the grouting speed increases from 0.1m /s to 0.2m /s, the particle settlement and diffusion range increases about twice. In the plane flow field, it is observed that the outward diffusion trend and speed of grouting are more obvious. It is worth noting that in the whole process of grouting, it is observed that with the increase of grouting distance and depth, both the velocity of slurry and particles show a trend of rapid initial decline and gradually slow down, and the flow velocity of slurry near the grouting outlet at a flow rate of 0.2m/s is 2-4 times that of 0.1m/s. This provides important enlightenment for the porous seepage effect at different grouting speeds.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0297151