A Second-Order Crank-Nicolson-Type Scheme for Nonlinear Space–Time Reaction–Diffusion Equations on Time-Graded Meshes

A weak singularity in the solution of time-fractional differential equations can degrade the accuracy of numerical methods when employing a uniform mesh, especially with schemes involving the Caputo derivative (order α,), where time accuracy is of the order (2−α) or (1+α). To deal with this problem,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2023-01, Vol.7 (1), p.40
Hauptverfasser: Afolabi, Yusuf O., Biala, Toheeb A., Iyiola, Olaniyi S., Khaliq, Abdul Q. M., Wade, Bruce A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A weak singularity in the solution of time-fractional differential equations can degrade the accuracy of numerical methods when employing a uniform mesh, especially with schemes involving the Caputo derivative (order α,), where time accuracy is of the order (2−α) or (1+α). To deal with this problem, we present a second-order numerical scheme for nonlinear time–space fractional reaction–diffusion equations. For spatial resolution, we employ a matrix transfer technique. Using graded meshes in time, we improve the convergence rate of the algorithm. Furthermore, some sharp error estimates that give an optimal second-order rate of convergence are presented and proven. We discuss the stability properties of the numerical scheme and elaborate on several empirical examples that corroborate our theoretical observations.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract7010040