Effects of Different Fertilizers on Rhizosphere Bacterial Communities of Winter Wheat in the North China Plain

The application of bioorganic fertilizer affects rhizosphere microbes and further improves soil fertility in farmlands. However, the effects of different fertilizers on rhizosphere bacterial community diversity and structure of winter wheat remains unclear. In this study, we explored the effects of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2020-01, Vol.10 (1), p.93
Hauptverfasser: Liang, Rubiao, Hou, Ruixing, Li, Jing, Lyu, Yun, Hang, Sheng, Gong, Huarui, Ouyang, Zhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of bioorganic fertilizer affects rhizosphere microbes and further improves soil fertility in farmlands. However, the effects of different fertilizers on rhizosphere bacterial community diversity and structure of winter wheat remains unclear. In this study, we explored the effects of different fertilization treatments (no fertilizer added, CK; nitrogen fertilizer, NF; bioorganic fertilizer, BOF) on the rhizosphere bacterial community of winter wheat in the North China Plain. Rhizosphere soil treated with BOF had a higher Shannon index than that of CK and NF. The relative abundance of the Proteobacteria treated with BOF was significantly higher than that of NF, while the Acidobacteria and Planctomycetes were significantly lower. The redundancy analysis (RDA) and Mantel test showed that soil bacterial communities were significantly correlated with pH, nitrate, available phosphorus (AP), and available potassium (AK). Our findings indicated that BOF increased bacterial diversity and the relative abundance of copiotrophic bacteria in rhizosphere soil, while NF reduced bacterial diversity and increased the relative abundance of oligotrophic bacteria. The increase in copiotrophic bacteria in the rhizosphere of winter wheat could indicate an increase in soil nutrient availability, which might have positive implications for soil fertility and crop production.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy10010093