Resource Prediction-Based Edge Collaboration Scheme for Improving QoE

Recent years have witnessed a growth in the Internet of Things (IoT) applications and devices; however, these devices are unable to meet the increased computational resource needs of the applications they host. Edge servers can provide sufficient computing resources. However, when the number of conn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-12, Vol.21 (24), p.8500
Hauptverfasser: Park, Jinho, Chung, Kwangsue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent years have witnessed a growth in the Internet of Things (IoT) applications and devices; however, these devices are unable to meet the increased computational resource needs of the applications they host. Edge servers can provide sufficient computing resources. However, when the number of connected devices is large, the task processing efficiency decreases due to limited computing resources. Therefore, an edge collaboration scheme that utilizes other computing nodes to increase the efficiency of task processing and improve the quality of experience (QoE) was proposed. However, existing edge server collaboration schemes have low QoE because they do not consider other edge servers' computing resources or communication time. In this paper, we propose a resource prediction-based edge collaboration scheme for improving QoE. We estimate computing resource usage based on the tasks received from the devices. According to the predicted computing resources, the edge server probabilistically collaborates with other edge servers. The proposed scheme is based on the delay model, and uses the greedy algorithm. It allocates computing resources to the task considering the computation and buffering time. Experimental results show that the proposed scheme achieves a high QoE compared with existing schemes because of the high success rate and low completion time.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21248500