SEGMENTASI WARNA UNTUK EKSTRAKSI SIMBOL DAN KARAKTER PADA CITRA RAMBU LALU LINTAS

Penelitian ini membahas teknik segmentasi warna berbasis RGB Chromaticity Diagram ternormalisasi, untuk ekstraksi simbol dan karakter pada citra rambu lalu lintas. Teknik yang diusulkan adalah memisahkan warna biru pada latar belakang rambu petunjuk lalu lintas. Hal tersebut dilakukan dengan memanfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jurnal ilmu komputer dan informasi (Journal of computer science and information) (Online) 2012-05, Vol.3 (1), p.18-24
Hauptverfasser: Aryuanto Sutedjo, F. Yudi Limpraptono, Koichi Yamada
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Penelitian ini membahas teknik segmentasi warna berbasis RGB Chromaticity Diagram ternormalisasi, untuk ekstraksi simbol dan karakter pada citra rambu lalu lintas. Teknik yang diusulkan adalah memisahkan warna biru pada latar belakang rambu petunjuk lalu lintas. Hal tersebut dilakukan dengan memanfaatkan histogram yang dikembangkan pada diagram kromatisitas untuk penentuan nilai ambang segmentasi secara otomatis. Selain itu, teknik morfologi citra dan proyeksi histogram digunakan untuk ekstraksi simbol dan karakter. Dari hasil eksperimen diperoleh bahwa teknik yang diusulkan dapat mengekstrak simbol dan karakter dengan rata-rata ekstraksi 97.3%. This research describes a normalized color segmentation technique based on RGB Chromaticity Diagram, for the extraction of symbols and characters in the image of the traffic signs. The proposed technique is to separate the blue color of the background traffic signs. This is done by using a histogram that was developed in the chromaticity diagram for the determination of the threshold value segmentation automatically. In addition, the image morphology technique and projection histogram are used for the extraction of symbols and characters. From the experimental results obtained that the proposed technique can extract symbols and characters with an average extraction is 97.3%.
ISSN:2088-7051
2502-9274
DOI:10.21609/jiki.v3i1.137