Encryption of Color Images with an Evolutionary Framework Controlled by Chaotic Systems

In the past decade, a large amount of important digital data has been created and stored in the form of color images; the protection of such data from undesirable accesses has become an important problem in information security. In this paper, a new approach based on an evolutionary framework is pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2023-04, Vol.25 (4), p.631
Hauptverfasser: Man, Xinpeng, Song, Yinglei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the past decade, a large amount of important digital data has been created and stored in the form of color images; the protection of such data from undesirable accesses has become an important problem in information security. In this paper, a new approach based on an evolutionary framework is proposed for the secure encryption of color images. The image contents in a color image are first fully scrambled with a sequence of bit-level operations determined by a number of integer keys. A scrambled image is then encrypted with keys generated from an evolutionary process controlled by a set of chaotic systems. Analysis and experiments show that the proposed approach can generate encrypted color images with high security. In addition, the performance of the proposed approach is compared with that of a few state-of-the-art approaches for color image encryption. The results of the comparison suggest that the proposed approach outperforms the other approaches in the overall security of encrypted images. The proposed approach is thus potentially useful for applications that require color image encryption.
ISSN:1099-4300
1099-4300
DOI:10.3390/e25040631