On Combining DeepSnake and Global Saliency for Detection of Orchard Apples

For the fast detection and recognition of apple fruit targets, based on the real-time DeepSnake deep learning instance segmentation model, this paper provided an algorithm basis for the practical application and promotion of apple picking robots. Since the initial detection results have an important...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-07, Vol.11 (14), p.6269
Hauptverfasser: Jing, Wang, Leqi, Wang, Yanling, Han, Yun, Zhang, Ruyan, Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the fast detection and recognition of apple fruit targets, based on the real-time DeepSnake deep learning instance segmentation model, this paper provided an algorithm basis for the practical application and promotion of apple picking robots. Since the initial detection results have an important impact on the subsequent edge prediction, this paper proposed an automatic detection method for apple fruit targets in natural environments based on saliency detection and traditional color difference methods. Combined with the original image, the histogram backprojection algorithm was used to further optimize the salient image results. A dynamic adaptive overlapping target separation algorithm was proposed to locate the single target fruit and further to determine the initial contour for DeepSnake, in view of the possible overlapping fruit regions in the saliency map. Finally, the target fruit was labeled based on the segmentation results of the examples. In the experiment, 300 training datasets were used to train the DeepSnake model, and the self-built dataset containing 1036 pictures of apples in various situations under natural environment was tested. The detection accuracy of target fruits under non-overlapping shaded fruits, overlapping fruits, shaded branches and leaves, and poor illumination conditions were 99.12%, 94.78%, 90.71%, and 94.46% respectively. The comprehensive detection accuracy was 95.66%, and the average processing time was 0.42 s in 1036 test images, which showed that the proposed algorithm can effectively separate the overlapping fruits through a not-very-large training samples and realize the rapid and accurate detection of apple targets.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11146269