A sharp error analysis for the DG method of optimal control problems
In this paper, we are concerned with a nonlinear optimal control problem of ordinary differential equations. We consider a discretization of the problem with the discontinuous Galerkin method with arbitrary order $ r \in \mathbb{N}\cup \{0\} $. Under suitable regularity assumptions on the cost funct...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2022-01, Vol.7 (5), p.9117-9155 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we are concerned with a nonlinear optimal control problem of ordinary differential equations. We consider a discretization of the problem with the discontinuous Galerkin method with arbitrary order $ r \in \mathbb{N}\cup \{0\} $. Under suitable regularity assumptions on the cost functional and solutions of the state equations, we first show the existence of a local solution to the discretized problem. We then provide sharp estimates for the $ L^2 $-error of the approximate solutions. The convergence rate of the error depends on the regularity of the optimal solution $ \bar{u} $ and its adjoint state with the degree of piecewise polynomials. Numerical experiments are presented supporting the theoretical results. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022506 |