A sharp error analysis for the DG method of optimal control problems

In this paper, we are concerned with a nonlinear optimal control problem of ordinary differential equations. We consider a discretization of the problem with the discontinuous Galerkin method with arbitrary order $ r \in \mathbb{N}\cup \{0\} $. Under suitable regularity assumptions on the cost funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2022-01, Vol.7 (5), p.9117-9155
Hauptverfasser: Choi, Woocheol, Choi, Young-Pil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we are concerned with a nonlinear optimal control problem of ordinary differential equations. We consider a discretization of the problem with the discontinuous Galerkin method with arbitrary order $ r \in \mathbb{N}\cup \{0\} $. Under suitable regularity assumptions on the cost functional and solutions of the state equations, we first show the existence of a local solution to the discretized problem. We then provide sharp estimates for the $ L^2 $-error of the approximate solutions. The convergence rate of the error depends on the regularity of the optimal solution $ \bar{u} $ and its adjoint state with the degree of piecewise polynomials. Numerical experiments are presented supporting the theoretical results.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022506