A Metamorphic Testing Approach for Assessing Question Answering Systems

Question Answering (QA) enables the machine to understand and answer questions posed in natural language, which has emerged as a powerful tool in various domains. However, QA is a challenging task and there is an increasing concern about its quality. In this paper, we propose to apply the technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-04, Vol.9 (7), p.726
Hauptverfasser: Tu, Kaiyi, Jiang, Mingyue, Ding, Zuohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Question Answering (QA) enables the machine to understand and answer questions posed in natural language, which has emerged as a powerful tool in various domains. However, QA is a challenging task and there is an increasing concern about its quality. In this paper, we propose to apply the technique of metamorphic testing (MT) to evaluate QA systems from the users’ perspectives, in order to help the users to better understand the capabilities of these systems and then to select appropriate QA systems for their specific needs. Two typical categories of QA systems, namely, the textual QA (TQA) and visual QA (VQA), are studied, and a total number of 17 metamorphic relations (MRs) are identified for them. These MRs respectively focus on some characteristics of different aspects of QA. We further apply MT to four QA systems (including two APIs from the AllenNLP platform, one API from the Transformers platform, and one API from CloudCV) by using all of the MRs. Our experimental results demonstrate the capabilities of the four subject QA systems from various aspects, revealing their strengths and weaknesses. These results further suggest that MT can be an effective method for assessing QA systems.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9070726