Thresholds of temperature change for mass extinctions
Climate change is a critical factor affecting biodiversity. However, the quantitative relationship between temperature change and extinction is unclear. Here, we analyze magnitudes and rates of temperature change and extinction rates of marine fossils through the past 450 million years (Myr). The re...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-08, Vol.12 (1), p.4694-8, Article 4694 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Climate change is a critical factor affecting biodiversity. However, the quantitative relationship between temperature change and extinction is unclear. Here, we analyze magnitudes and rates of temperature change and extinction rates of marine fossils through the past 450 million years (Myr). The results show that both the rate and magnitude of temperature change are significantly positively correlated with the extinction rate of marine animals. Major mass extinctions in the Phanerozoic can be linked to thresholds in climate change (warming or cooling) that equate to magnitudes >5.2 °C and rates >10 °C/Myr. The significant relationship between temperature change and extinction still exists when we exclude the five largest mass extinctions of the Phanerozoic. Our findings predict that a temperature increase of 5.2 °C above the pre-industrial level at present rates of increase would likely result in mass extinction comparable to that of the major Phanerozoic events, even without other, non-climatic anthropogenic impacts.
The linkage between temperature change and extinction rates in the fossil record is well-known qualitatively but little explored quantitatively. Here the authors investigate the relationship of marine animal extinctions with rate and magnitude of temperature change across the last 450 million years, and identify thresholds in climate change linked to mass extinctions. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-25019-2 |