Anomaly Detection in Autonomous Deep-Space Navigation via Filter Bank Gating Networks

This study investigates methods for autonomous navigation of a deep-space spacecraft where one-way radiometric and on-board optical information are fused to create a fully informed state estimate. The specific focus is on using filter bank methods (i.e., Multiple Model Estimation [MME] and Mixture o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-11, Vol.12 (21), p.11161
Hauptverfasser: Lubey, Daniel P., Ely, Todd A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates methods for autonomous navigation of a deep-space spacecraft where one-way radiometric and on-board optical information are fused to create a fully informed state estimate. The specific focus is on using filter bank methods (i.e., Multiple Model Estimation [MME] and Mixture of Experts [MoE]) to detect when measurement and/or dynamical mis-modeling occurs. We develop a new χ2-based gating network for a filter bank that may be used to identify poorly performing filters (i.e., those with low weights), which may be used as a signal for mis-modeling in the system. In addition to defining and deriving this new weighting scheme, numerical simulations based on NASA’s InSight mission demonstrate this new algorithm’s performance with and without measurement and dynamical mis-modeling present.
ISSN:2076-3417
2076-3417
DOI:10.3390/app122111161