Intrinsic modification of repair mortars made with EVA and CaO, impacts at the earlier ages

Many studies have been realised on polymer-modified mortars (PMMs). Among the polymers used, ethylene vinyl acetate (EVA) has revealed evident interaction between calcium ions and its acetate groups. Most of the studies have shown a positive impact of EVA on mortar performance, which is enhanced by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC Web of Conferences 2018-01, Vol.199, p.7004
Hauptverfasser: Ngassam, Inès L. Tchetgnia, Schmidt, Wolfram, Beushausen, Hans, Kühne, Hans-Carsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many studies have been realised on polymer-modified mortars (PMMs). Among the polymers used, ethylene vinyl acetate (EVA) has revealed evident interaction between calcium ions and its acetate groups. Most of the studies have shown a positive impact of EVA on mortar performance, which is enhanced by the combination of the EVA with calcium oxide CaO. However, there is still a lack of understanding of the nature of these interactions and no clear link has been established between these interactions and the properties of the cementitious materials at early ages. This article aims to tackle this topic by focusing on the evolution of EVA particles in a pore solution and the properties of a cement modified with EVA and CaO, especially the rheological behaviour. As results, it is observed that the zeta potential of the pore solution decreases when EVA is added. Furthermore, the hydrodynamic radius of this polymer tends to increase over time in the pore solution. On the other hand, the EVA tends to delay the setting time while the CaO accelerates it. For the rheological state, EVA tends to govern the plastic viscosity of the cement paste while CaO governs the yield stress and these parameters are not affected by the mixing time during the first 100 min. Their combination enhances these rheological parameters.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201819907004