Self-selective formation of ordered 1D and 2D GaBi structures on wurtzite GaAs nanowire surfaces

Scaling down material synthesis to crystalline structures only few atoms in size and precisely positioned in device configurations remains highly challenging, but is crucial for new applications e.g., in quantum computing. We propose to use the sidewall facets of larger III–V semiconductor nanowires...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-10, Vol.12 (1), p.5990-5990, Article 5990
Hauptverfasser: Liu, Yi, Knutsson, Johan V., Wilson, Nathaniel, Young, Elliot, Lehmann, Sebastian, Dick, Kimberly A., Palmstrøm, Chris J., Mikkelsen, Anders, Timm, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scaling down material synthesis to crystalline structures only few atoms in size and precisely positioned in device configurations remains highly challenging, but is crucial for new applications e.g., in quantum computing. We propose to use the sidewall facets of larger III–V semiconductor nanowires (NWs), with controllable axial stacking of different crystal phases, as templates for site-selective growth of ordered few atoms 1D and 2D structures. We demonstrate this concept of self-selective growth by Bi deposition and incorporation into the surfaces of GaAs NWs to form GaBi structures. Using low temperature scanning tunneling microscopy (STM), we observe the crystal structure dependent self-selective growth process, where ordered 1D GaBi atomic chains and 2D islands are alloyed into surfaces of the wurtzite (Wz) { 11 2 ¯ 0 } crystal facets. The formation and lateral extension of these surface structures are controlled by the crystal structure and surface morphology uniquely found in NWs. This allows versatile high precision design of structures with predicted novel topological nature, by using the ability of NW heterostructure variations over orders of magnitude in dimensions with atomic-scale precision as well as controllably positioning in larger device structures. Site-selected crystal material synthesis at the atomic scale has been a long-standing challenge. Here the authors use nanowire crystal phase heterostructures as templates for self-selective growth of one- and two-dimensional GaBi nanostructures, which allows versatile design with atomic-scale precision.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-26148-4