Bifurcation of critical periods of a quartic system
For the polynomial system $\dot x = ix + x \bar x ( a x^2 + b x \bar x + c \bar x^2)$ the study of critical period bifurcations is performed. Using calculations with algorithms of computational commutative algebra it is shown that at most two critical periods can bifurcate from any nonlinear center...
Gespeichert in:
Veröffentlicht in: | Electronic journal of qualitative theory of differential equations 2018-01, Vol.2018 (76), p.1-18 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the polynomial system $\dot x = ix + x \bar x ( a x^2 + b x \bar x + c \bar x^2)$ the study of critical period bifurcations is performed. Using calculations with algorithms of computational commutative algebra it is shown that at most two critical periods can bifurcate from any nonlinear center of the system. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2018.1.76 |