Bifurcation of critical periods of a quartic system

For the polynomial system $\dot x = ix + x \bar x ( a x^2 + b x \bar x + c \bar x^2)$ the study of critical period bifurcations is performed. Using calculations with algorithms of computational commutative algebra it is shown that at most two critical periods can bifurcate from any nonlinear center...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of qualitative theory of differential equations 2018-01, Vol.2018 (76), p.1-18
Hauptverfasser: Huang, Wentao, Basov, Vladimir, Han, Mao'an, Romanovski, Valery
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the polynomial system $\dot x = ix + x \bar x ( a x^2 + b x \bar x + c \bar x^2)$ the study of critical period bifurcations is performed. Using calculations with algorithms of computational commutative algebra it is shown that at most two critical periods can bifurcate from any nonlinear center of the system.
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2018.1.76