Small-Amplitude Nonlinear Modes under the Combined Effect of the Parabolic Potential, Nonlocality and PT Symmetry

We consider nonlinear modes of the nonlinear Schrödinger equation with nonlocal nonlinearities and and PT -symmetric parabolic potential. We show that there exists a set of continuous families of nonlinear modes and study their linear stability in the limit of small nonlinearity. It is demonstrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2016, Vol.8 (8), p.72-72
Hauptverfasser: Zezyulin, Dmitry A, Konotop, Vladimir V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider nonlinear modes of the nonlinear Schrödinger equation with nonlocal nonlinearities and and PT -symmetric parabolic potential. We show that there exists a set of continuous families of nonlinear modes and study their linear stability in the limit of small nonlinearity. It is demonstrated that either PT symmetry or the nonlocality can be used to manage the stability of the small-amplitude nonlinear modes. The stability properties are also found to depend on the particular shape of the nonlocal kernel. Numerical simulations show that the stability results remain valid not only for the infinitesimally small nonlinear modes, but also for the modes of finite amplitude.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym8080072