Restructuring dynamics of surface species in bimetallic nanoparticles probed by modulation excitation spectroscopy

Restructuring of metal components on bimetallic nanoparticle surfaces in response to the changes in reactive environment is a ubiquitous phenomenon whose potential for the design of tunable catalysts is underexplored. The main challenge is the lack of knowledge of the structure, composition, and evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-08, Vol.15 (1), p.6736-10, Article 6736
Hauptverfasser: Routh, Prahlad K., Redekop, Evgeniy, Prodinger, Sebastian, van der Hoeven, Jessi E. S., Lim, Kang Rui Garrick, Aizenberg, Joanna, Nachtegaal, Maarten, Clark, Adam H., Frenkel, Anatoly I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Restructuring of metal components on bimetallic nanoparticle surfaces in response to the changes in reactive environment is a ubiquitous phenomenon whose potential for the design of tunable catalysts is underexplored. The main challenge is the lack of knowledge of the structure, composition, and evolution of species on the nanoparticle surfaces during reaction. We apply a modulation excitation approach to the X-ray absorption spectroscopy of the 30 atomic % Pd in Au supported nanocatalysts via the gas (H 2 and O 2 ) concentration modulation. For interpreting restructuring kinetics, we correlate the phase-sensitive detection with the time-domain analysis aided by a denoising algorithm. Here we show that the surface and near-surface species such as Pd oxides and atomically dispersed Pd restructured periodically, featuring different time delays. We propose a model that Pd oxide formation is preceded by the build-up of Pd regions caused by oxygen-driven segregation of Pd atoms towards the surface. During the H 2 pulse, rapid reduction and dissolution of Pd follows an induction period which we attribute to H 2 dissociation. Periodic perturbations of nanocatalysts by gases can, therefore, enable variations in the stoichiometry of the surface and near-surface oxides and dynamically tune the degree of oxidation/reduction of metals at/near the catalyst surface. Nanocatalysts can restructure during reactions. Here, the authors dynamically varied the stoichiometry of the surface species in 30 % Pd-in-Au nanoparticles by modulating H2 and O2 gases and quantified the formation kinetics of Pd regions and oxides.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-51068-4