Self-Learning Control System Concept for APU Test Cells

The proposed concept presents an innovative test cell control system, compatible with an existing APU (Auxiliary Power Unit) test cell. The system is essentially a Non-Propulsive Energy (NPE) Power Management Unit that needs to efficiently distribute power among an aircraft’s pneumatic and electrica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ciobanu, Razvan, Stoicescu, Adrian, Nechifor, Cristian, Taranu, Alexandra
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proposed concept presents an innovative test cell control system, compatible with an existing APU (Auxiliary Power Unit) test cell. The system is essentially a Non-Propulsive Energy (NPE) Power Management Unit that needs to efficiently distribute power among an aircraft’s pneumatic and electrical loads, based on key parameters read from: loads (electrical, pneumatical), a real APU and real-time models of main engines representative to the aircraft. For this, the concept suggests a hardware & software solution, based on the approach of Artificial Neural Network (ANN). The ANN processes all inputs according to a mathematical law trained from existing data sets, such that minimal power loss is considered, given all safety levels are achieved. Development of the neural network is made such that the fastest response time and best performance consist as general goals, and the resulting control system is tested via Hardware-in-the-Loop simulation. Thus, the neural network is also designed to be safe and stable given maximum performance. The hardware solution describes all the equipment included to fulfil the objectives of the concept.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201821002009