Mechanical Properties and Fracture Behavior of Laser Powder-Bed-Fused GH3536 Superalloy

Heat treatment (HT) is an important approach to tune the structure and mechanical properties of as-printed or hot-isostatic-pressed (HIPed) additive manufacturing materials. Due to the carbide precipitates extensively existing after HT with air cooling, this paper studies the microstructure and mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2022-07, Vol.12 (7), p.1165
Hauptverfasser: Ni, Haohan, Zeng, Qi, Zhang, Kai, Chen, Yingbin, Wang, Jiangwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat treatment (HT) is an important approach to tune the structure and mechanical properties of as-printed or hot-isostatic-pressed (HIPed) additive manufacturing materials. Due to the carbide precipitates extensively existing after HT with air cooling, this paper studies the microstructure and mechanical behavior of laser powder-bed-fused (L-PBFed) GH3536 superalloy with laminar carbide precipitates at grain boundaries. By comparing with air-cooling samples and water-quenched samples, the results revealed that air cooling often introduced precipitates at grain boundaries, which impede the plastic deformation and are prone to lead to severe transgranular cracks on the fracture surface, contributing to a higher strain-hardening rate but lower ductility of HTed sample. Water quench can largely eliminate the grain-boundary precipitates, contributing to an optimized ductility even with smaller grain size. This work provides more details on the precipitate-deformation relation after HT.
ISSN:2075-4701
2075-4701
DOI:10.3390/met12071165