Real-Time Indoor Environmental Quality (IEQ) Monitoring Using an IoT-Based Wireless Sensing Network

In recent years, our time spent indoors has risen to around 90% and to maintain an occupant's comfort and well-being, Indoor Environmental Quality (IEQ) is monitored. Concerned with inhabitant's satisfaction and health, the adoption of smart solutions for IEQ monitoring and improvement has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-10, Vol.24 (21), p.6850
Hauptverfasser: Tsang, Tsz-Wun, Mui, Kwok-Wai, Wong, Ling-Tim, Chan, Angus Chun-Yu, Chan, Ricky Chi-Wai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, our time spent indoors has risen to around 90% and to maintain an occupant's comfort and well-being, Indoor Environmental Quality (IEQ) is monitored. Concerned with inhabitant's satisfaction and health, the adoption of smart solutions for IEQ monitoring and improvement has expanded. The solution this study explores is an occupant-centric approach involving the implementation of an Internet of Things (IoT) IEQ sensing network in a prominent office skyscraper in Hong Kong. Over the course of 15 months, real-time IEQ data were collected from 12 locations within the building. The data were collected at 1-min time intervals and consisted of readings of indoor air temperature, radiant temperature, relative humidity, air velocity, carbon dioxide (CO ), particulate matter (PM and PM ), horizontal illuminance levels, and sound pressure levels, which served as the basis of the assessment made about the qualities of thermal comfort, indoor air quality (IAQ), aural comfort, and visual comfort. Compared to traditional periodic surveys, this IoT-based sensing network captured instantaneous environmental variations, providing valuable insights into the indoor environment's spatial characterization and temporal dynamics. This smart solution also assisted facility management in terms of identifying sources of discomfort and developing effective mitigation strategies accordingly. This study presents an occupant-centric approach to improve occupant comfort and energy efficiency within office buildings. By customizing the built environment to enhance occupants' well-being, comfort, and productivity, an emphasis is placed on a more personalized and occupant-focused design strategy. This approach integrates technical design with human experience, highlighting the importance of real-time physical and subjective surveys for achieving optimal results.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24216850