100 Hz ROCS microscopy correlated with fluorescence reveals cellular dynamics on different spatiotemporal scales

Fluorescence techniques dominate the field of live-cell microscopy, but bleaching and motion blur from too long integration times limit dynamic investigations of small objects. High contrast, label-free life-cell imaging of thousands of acquisitions at 160 nm resolution and 100 Hz is possible by Rot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-04, Vol.13 (1), p.1758-1758, Article 1758
Hauptverfasser: Jünger, Felix, Ruh, Dominic, Strobel, Dominik, Michiels, Rebecca, Huber, Dominik, Brandel, Annette, Madl, Josef, Gavrilov, Alina, Mihlan, Michael, Daller, Caterina Cora, Rog-Zielinska, Eva A., Römer, Winfried, Lämmermann, Tim, Rohrbach, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluorescence techniques dominate the field of live-cell microscopy, but bleaching and motion blur from too long integration times limit dynamic investigations of small objects. High contrast, label-free life-cell imaging of thousands of acquisitions at 160 nm resolution and 100 Hz is possible by Rotating Coherent Scattering (ROCS) microscopy, where intensity speckle patterns from all azimuthal illumination directions are added up within 10 ms. In combination with fluorescence, we demonstrate the performance of improved Total Internal Reflection (TIR)-ROCS with variable illumination including timescale decomposition and activity mapping at five different examples: millisecond reorganization of macrophage actin cortex structures, fast degranulation and pore opening in mast cells, nanotube dynamics between cardiomyocytes and fibroblasts, thermal noise driven binding behavior of virus-sized particles at cells, and, bacterial lectin dynamics at the cortex of lung cells. Using analysis methods we present here, we decipher how motion blur hides cellular structures and how slow structure motions cover decisive fast motions. In live-cell microscopy, motion blur limits resolution and contrast. Here the authors use 100 Hz super-resolving Rotating Coherent Scattering (ROCS) microscopy on various dynamic biological systems, and time-window analysis to understand biological effects.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29091-0