Existence of Infinitely Many Distinct Solutions to the Quasirelativistic Hartree-Fock Equations

We establish existence of infinitely many distinct solutions to the semilinear elliptic Hartree-Fock equations for N-electron Coulomb systems with quasirelativistic kinetic energy −α−2Δxn+α−4−α−2 for the nth electron. Moreover, we prove existence of a ground state. The results are valid under the hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2009-01, Vol.2009 (1), p.867-886
Hauptverfasser: Enstedt, M., Melgaard, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish existence of infinitely many distinct solutions to the semilinear elliptic Hartree-Fock equations for N-electron Coulomb systems with quasirelativistic kinetic energy −α−2Δxn+α−4−α−2 for the nth electron. Moreover, we prove existence of a ground state. The results are valid under the hypotheses that the total charge Ztot of K nuclei is greater than N−1 and that Ztot is smaller than a critical charge Zc. The proofs are based on a new application of the Fang-Ghoussoub critical point approach to multiple solutions on a noncompact Riemannian manifold, in combination with density operator techniques.
ISSN:0161-1712
1687-0425
DOI:10.1155/2009/651871