Novel Special Orthogonal Group Optimization for Coarse Alignment Method of SINS on a Rocking Base

In order to solve the coarse alignment problem of the strapdown inertial navigation system on a rocking base, a fast coarse alignment method using the Special Orthogonal Group optimization has been proposed in this paper. In this method, based on the alignment idea of tracing gravitational apparent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Aerospace Engineering 2022-11, Vol.2022, p.1-13
Hauptverfasser: Pei, Fujun, Li, Siyuan, Peng, Li, Yin, Shunan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to solve the coarse alignment problem of the strapdown inertial navigation system on a rocking base, a fast coarse alignment method using the Special Orthogonal Group optimization has been proposed in this paper. In this method, based on the alignment idea of tracing gravitational apparent motion in inertial frame, the model of coarse alignment on a rocking base has been established using the Special Orthogonal Group directly. A new attitude error function has been proposed on the basis of the cosines between the measurement vector and predictive vector to describe the error between the estimated attitude and the true one. In order to directly reflect the change in the attitude error in the new innovation term and enable the attitude error to converge to zero as fast as possible, the gradient of the new attitude error function has been selected as the new innovation term to compensate for the attitude in the estimation process. Finally, the stability of the proposed optimization estimation method has been proved by employing the Lyapunov stability theory. Simulation and experiment results show that the method presented in this paper exhibits good performance in terms of alignment accuracy and time and can be applied to coarse alignment under a rocking base under different environments.
ISSN:1687-5966
1687-5974
DOI:10.1155/2022/7627346