Atmospheric Rivers in South-Central Chile: Zonal and Tilted Events
The extratropical west coast of South America has one of the largest frequencies of landfalling atmospheric rivers (ARs), with dozens of events per season that account for ~50% of the annual precipitation and can produce extreme rainfall events in south-central Chile. Most ARs form an acute angle wi...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2024-04, Vol.15 (4), p.406 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The extratropical west coast of South America has one of the largest frequencies of landfalling atmospheric rivers (ARs), with dozens of events per season that account for ~50% of the annual precipitation and can produce extreme rainfall events in south-central Chile. Most ARs form an acute angle with the Andes, but, in some cases, the moist stream impinges nearly perpendicular to the mountains, referred to as zonal atmospheric rivers (ZARs). Enhanced surface-based and upper-air measurements in Concepcion (36.8° S), as well as numerical simulations, were used to characterize a ZAR and a meridionally oriented AR in July 2022. They represent extremes of the broad distribution of winter storms in this region and exhibit key features that were found in a composite analysis based on larger samples of ZARs and tilted ARs. The latter is associated with an upper-level trough, broad-scale ascent, extratropical cyclone, and cold front reaching southern Chile. Instead, ZARs are associated with tropospheric-deep, strong zonal flow and a stationary front across the South Pacific, with ascent restricted upstream of the Andes. Consequently, ZARs have minimum precipitation offshore but a marked orographic precipitation enhancement and exhibit relatively warm temperatures, thus resulting in an augmented risk of hydrometeorological extreme events. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos15040406 |