Synthesis of Fe3O4/CuO/ZnO/RGO and its catalytic degradation of dye wastewater using dielectric barrier discharge plasma

The design of an efficient and green dye degradation technology is of great significance to mitigate water pollution as well as ecological damage. Fe3O4/CuO/ZnO/RGO was prepared by solvothermal synthesis and homogeneous precipitation. X-ray diffraction (XRD), field emission scanning electron microsc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of chemistry 2023-04, Vol.16 (4), p.104571, Article 104571
Hauptverfasser: Shen, Yongjun, Wang, Yunli, Chen, Yin, Kwang Park, Jae, Fang, Shuaikang, Feng, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design of an efficient and green dye degradation technology is of great significance to mitigate water pollution as well as ecological damage. Fe3O4/CuO/ZnO/RGO was prepared by solvothermal synthesis and homogeneous precipitation. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), and vibrating-sample magnetometry (VSM) were used to characterize the samples, to explore the morphology and structural composition of the composites. To enhance the degradation efficiency, a dielectric barrier discharge (DBD)–Fe3O4/CuO/ZnO/RGO co-catalytic system was created based on the DBD plasma technology. Response surface methodology analysis results demonstrate that the degradation effect of DBD–Fe3O4/CuO/ZnO/RGO is optimal and the decolorization rate is 95.06 % when the solution pH is 3, conductivity is 0.5 mS/cm, the input voltage is 90 V, and Fe3O4/CuO/ZnO/RGO concentration is 0.18 g/L. Therefore, this study offers a novel method for dye degradation and confirms the viability of a DBD–Fe3O4/CuO/ZnO/RGO synergistic catalytic system.
ISSN:1878-5352
1878-5379
DOI:10.1016/j.arabjc.2023.104571