Soft scattering evaporation of dark matter subhalos by inner galactic gases
The large gap between a galactic dark matter subhalo’s velocity and its own gravitational binding velocity creates the situation that small subhalos can be evaporated before dark matter thermalize with baryons due to the low binding velocity. In case dark matter acquires an electromagnetic dipole mo...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2023-09, Vol.83 (9), p.808-10, Article 808 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The large gap between a galactic dark matter subhalo’s velocity and its own gravitational binding velocity creates the situation that small subhalos can be evaporated before dark matter thermalize with baryons due to the low binding velocity. In case dark matter acquires an electromagnetic dipole moment, the survival of low-mass subhalos requires stringent limits on the photon-mediated soft scattering. The current stringent direct detection limits indicate for a small dipole moment, which lets DM decouple early and allows small subhalos to form. We calculate the DM kinetic decoupling temperature in the Early Universe and evaluate the smallest protohalo mass. In the late Universe, low-mass subhalos can be evaporated via soft collision by ionized gas and accelerated cosmic rays. We calculate the subhalos evaporation rate and show that subhalos lighter than
10
-
5
M
⊙
in the gaseous inner galactic region are subject to evaporation via dark matter’s effective electric and magnetic dipole moments below current direct detection limits, which potentially affects the low-mass subhalos distribution in the galactic center. |
---|---|
ISSN: | 1434-6052 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-023-11987-w |