Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles

Understanding how phenotypic traits vary among populations inhabiting different environments is critical for predicting a species’ vulnerability to climate change. Yet, little is known about the key functional traits that determine the distribution of populations and the main mechanisms—phenotypic p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-03, Vol.11 (1), p.1398-12, Article 1398
Hauptverfasser: Tsai, Hsiang-Yu, Rubenstein, Dustin R., Fan, Yu-Meng, Yuan, Tzu-Neng, Chen, Bo-Fei, Tang, Yezhong, Chen, I-Ching, Shen, Sheng-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding how phenotypic traits vary among populations inhabiting different environments is critical for predicting a species’ vulnerability to climate change. Yet, little is known about the key functional traits that determine the distribution of populations and the main mechanisms—phenotypic plasticity vs. local adaptation—underlying intraspecific functional trait variation. Using the Asian burying beetle Nicrophorus nepalensis , we demonstrate that mountain ranges differing in elevation and latitude offer unique thermal environments in which two functional traits—thermal tolerance and reproductive photoperiodism—interact to shape breeding phenology. We show that populations on different mountain ranges maintain similar thermal tolerances, but differ in reproductive photoperiodism. Through common garden and reciprocal transplant experiments, we confirm that reproductive photoperiodism is locally adapted and not phenotypically plastic. Accordingly, year-round breeding populations on mountains of intermediate elevation are likely to be most susceptible to future warming because maladaptation occurs when beetles try to breed at warmer temperatures. Understanding whether intraspecific trait variation results from local adaptation or phenotypic plasticity is crucial to predict species responses to climate change. Here the authors investigate geographically distinct burying beetle populations, showing that photoperiodism is a locally adapted, not phenotypically plastic, trait.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15208-w