On the Use of Entropy to Improve Model Selection Criteria
The most widely used forms of model selection criteria, the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC), are expressed in terms of synthetic indicators of the residual distribution: the variance and the mean-squared error of the residuals respectively. In many app...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2019-04, Vol.21 (4), p.394 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The most widely used forms of model selection criteria, the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC), are expressed in terms of synthetic indicators of the residual distribution: the variance and the mean-squared error of the residuals respectively. In many applications in science, the noise affecting the data can be expected to have a Gaussian distribution. Therefore, at the same level of variance and mean-squared error, models, whose residuals are more uniformly distributed, should be favoured. The degree of uniformity of the residuals can be quantified by the Shannon entropy. Including the Shannon entropy in the BIC and AIC expressions improves significantly these criteria. The better performances have been demonstrated empirically with a series of simulations for various classes of functions and for different levels and statistics of the noise. In presence of outliers, a better treatment of the errors, using the Geodesic Distance, has proved essential. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e21040394 |