Finite-Size Effects with Boundary Conditions on Bose-Einstein Condensation
We investigate the statistical distribution for ideal Bose gases with constant particle density in the 3D box of volume V=L3. By changing linear size L and imposing different boundary conditions on the system, we present a numerical analysis on the characteristic temperature and condensate fraction...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2021-02, Vol.13 (2), p.300 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the statistical distribution for ideal Bose gases with constant particle density in the 3D box of volume V=L3. By changing linear size L and imposing different boundary conditions on the system, we present a numerical analysis on the characteristic temperature and condensate fraction and find that a smaller linear size is efficient to increase the characteristic temperature and condensate fraction. Moreover, there is a singularity under the antiperiodic boundary condition. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13020300 |