Finite-Size Effects with Boundary Conditions on Bose-Einstein Condensation

We investigate the statistical distribution for ideal Bose gases with constant particle density in the 3D box of volume V=L3. By changing linear size L and imposing different boundary conditions on the system, we present a numerical analysis on the characteristic temperature and condensate fraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2021-02, Vol.13 (2), p.300
Hauptverfasser: Cheng, Run, Wang, Qian-Yi, Wang, Yong-Long, Zong, Hong-Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the statistical distribution for ideal Bose gases with constant particle density in the 3D box of volume V=L3. By changing linear size L and imposing different boundary conditions on the system, we present a numerical analysis on the characteristic temperature and condensate fraction and find that a smaller linear size is efficient to increase the characteristic temperature and condensate fraction. Moreover, there is a singularity under the antiperiodic boundary condition.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym13020300