User Behavior Analysis for Detecting Compromised User Accounts: A Review Paper

The rise of online transactions has led to a corresponding increase in online criminal activities. Account takeover attacks, in particular, are challenging to detect, and novel approaches utilize machine learning to identify compromised accounts. This paper aims to conduct a literature review on acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and information technologies : CIT 2023-09, Vol.23 (3), p.102-113
Hauptverfasser: Jurišić, M., Tomičić, I., Grd, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rise of online transactions has led to a corresponding increase in online criminal activities. Account takeover attacks, in particular, are challenging to detect, and novel approaches utilize machine learning to identify compromised accounts. This paper aims to conduct a literature review on account takeover detection and user behavior analysis within the cybersecurity domain. By exploring these areas, the goal is to combat account takeovers and other fraudulent attempts effectively.
ISSN:1314-4081
1311-9702
1314-4081
DOI:10.2478/cait-2023-0027