Bending strength prediction and finite element analysis of larch structural beams

The material constants of wood required for finite element analysis (FEA) are usually calculated using small clear specimens. However, defects, such as knots and slope of grain affect the strength reduction in the full-size specimens. Consequently, an error occurs if only the material constant calcu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources 2023-02, Vol.18 (1), p.1824-1835
Hauptverfasser: Baek, Seung-Youp, Song, Yo-Jin, Kim, Hyun-Woo, Hong, Soon-Il
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The material constants of wood required for finite element analysis (FEA) are usually calculated using small clear specimens. However, defects, such as knots and slope of grain affect the strength reduction in the full-size specimens. Consequently, an error occurs if only the material constant calculated from the small clear specimens is used to predict modulus of rupture (MOR). Therefore, in this study, the MOR reduction coefficient according to defect was obtained through the bending test of the full-size specimens and applied to the FEA, in addition to the material constant from the small clear specimens. The maximum bending moment section was measured for a 3-section four-point load, and defects in the outermost tension layer were measured for laminated timber and glulam. The result of the bending test confirmed that MOR also decreased as the size of the defect increased. Therefore, when predicting MOR, a strength reduction ratio according to visual grade was applied. The MOR predicted FEA was twice as large as the actual MOR before defect correction, but the prediction error after defect correction was greatly reduced to 8%, thus increasing the prediction accuracy.
ISSN:1930-2126
1930-2126
DOI:10.15376/biores.18.1.1824-1835