Effects of Post-Treatment to Improve the Surface Quality of 3D Printing Cement Mold Casting

Powder bed 3D printing can be applied to sandcasting mold manufacturing to ensure high quality and economy through process innovation. In this study, refractory alumina cement was used as an aqueous binder to ensure high-temperature thermal stability to minimize the addition of organic matter to red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-12, Vol.11 (24), p.11824
Hauptverfasser: Chun, Seung-Yeop, Lee, Geumyeon, Kim, Su-jin, Jeong, Bora, Shin, Jeehoon, Cho, Inkyung, Kim, Hong-Dae, Lee, Heesoo, Kim, Taewook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Powder bed 3D printing can be applied to sandcasting mold manufacturing to ensure high quality and economy through process innovation. In this study, refractory alumina cement was used as an aqueous binder to ensure high-temperature thermal stability to minimize the addition of organic matter to reduce gas generation. In addition, spherical silica sand, the study material, was selected to a size of 30 µm to improve the casting mold resolution. To improve the surface quality through the post-treatment process, we confirmed the change in the surface roughness of the mold depending on the surface treatment of colloidal silica and the presence or absence of heat treatment, and finally made the mold through actual casting. Changes in the surface roughness and flowability of the cast body after mold post-treatment were confirmed. For aluminum castings, the shrinkage rate and surface roughness were confirmed in a box-shaped mold via gravity casting, and the flowability of the molten metal in the mold was confirmed in a hand-shaped mold. There was a change in the roughness and porosity of the mold, owing to the post-treatment, and the influence of the surface roughness and flowability of the cast body during actual casting was confirmed.
ISSN:2076-3417
2076-3417
DOI:10.3390/app112411824