Analytic vector-functions in the unit ball having bounded $\mathbf{L}$-index in joint variables

In this paper, we consider a class of vector-functions, which are analytic in the unit ball. For this class of functions there is introduced a concept of boundedness of $\mathbf{L}$-index in joint variables, where $\mathbf{L}=(l_1,l_2): \mathbb{B}^2\to\mathbb{R}^2_+$ is a positive continuous vector-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Karpats'kì matematinì publìkacìï 2019-12, Vol.11 (2), p.213-227
1. Verfasser: Baksa, V.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a class of vector-functions, which are analytic in the unit ball. For this class of functions there is introduced a concept of boundedness of $\mathbf{L}$-index in joint variables, where $\mathbf{L}=(l_1,l_2): \mathbb{B}^2\to\mathbb{R}^2_+$ is a positive continuous vector-function, $\mathbb{B}^2=\{z\in\mathbb{C}^2: |z|=\sqrt{|z_1|^2+|z_2|^2}\le 1\}.$ We present necessary and sufficient conditions of boundedness of $\mathbf{L}$-index in joint variables. They describe the local behavior of the maximum modulus of every component of the vector-function or its partial derivatives.
ISSN:2075-9827
2313-0210
DOI:10.15330/cmp.11.2.213-227