Machine Learning-Predicted Progression to Permanent Atrial Fibrillation After Catheter Ablation

We developed a prediction model for atrial fibrillation (AF) progression and tested whether machine learning (ML) could reproduce the prediction power in an independent cohort using pre-procedural non-invasive variables alone. Cohort 1 included 1,214 patients and cohort 2, 658, and all underwent AF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in cardiovascular medicine 2022-02, Vol.9, p.813914-813914
Hauptverfasser: Park, Je-Wook, Kwon, Oh-Seok, Shim, Jaemin, Hwang, Inseok, Kim, Yun Gi, Yu, Hee Tae, Kim, Tae-Hoon, Uhm, Jae-Sun, Kim, Jong-Youn, Choi, Jong Il, Joung, Boyoung, Lee, Moon-Hyoung, Kim, Young-Hoon, Pak, Hui-Nam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed a prediction model for atrial fibrillation (AF) progression and tested whether machine learning (ML) could reproduce the prediction power in an independent cohort using pre-procedural non-invasive variables alone. Cohort 1 included 1,214 patients and cohort 2, 658, and all underwent AF catheter ablation (AFCA). AF progression to permanent AF was defined as sustained AF despite repeat AFCA or cardioversion under antiarrhythmic drugs. We developed a risk stratification model for AF progression (STAAR score) and stratified cohort 1 into three groups. We also developed an ML-prediction model to classify three STAAR risk groups without invasive parameters and validated the risk score in cohort 2. The STAAR score consisted of a stroke (2 points, = 0.003), persistent AF (1 point, = 0.049), left atrial (LA) dimension ≥43 mm (1 point, = 0.010), LA voltage
ISSN:2297-055X
2297-055X
DOI:10.3389/fcvm.2022.813914