A Novel Data-Driven Modeling and Control Design Method for Autonomous Vehicles

This paper presents a novel modeling method for the control design of autonomous vehicle systems. The goal of the method is to provide a control-oriented model in a predefined Linear Parameter Varying (LPV) structure. The scheduling variables of the LPV model through machine-learning-based methods u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-01, Vol.14 (2), p.517
Hauptverfasser: Fényes, Dániel, Németh, Balázs, Gáspár, Péter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel modeling method for the control design of autonomous vehicle systems. The goal of the method is to provide a control-oriented model in a predefined Linear Parameter Varying (LPV) structure. The scheduling variables of the LPV model through machine-learning-based methods using a big dataset are selected. Moreover, the LPV model parameters through an optimization algorithm are computed, with which accurate fitting on the dataset is achieved. The proposed method is illustrated on the nonlinear modeling of the lateral vehicle dynamics. The resulting LPV-based vehicle model is used for the control design of path following functionality of autonomous vehicles. The effectiveness of the modeling and control design methods through comprehensive simulation examples based on a high-fidelity simulation software are illustrated.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14020517